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In the case of KHC204, l =  5.1 A ( =  a3/2), F= 20 A 2, 
and s =  1 .3 .10  -lz cm 2 dyne -1. These values yield a 
force constant f - - 0 . 3 0 ,  l0 s dyne cm -~, which is in 
reasonable agreement with the value f derived from 
force constants as determined from optical measure- 
ments. 

The actual value o f f  should be somewhat lower be- 
cause the influence of some force constants, which con- 
tribute to an increase of the compliance of the whole 
unit, was neglected. On the other hand, f,  as derived 
from the elastic constants, is not only caused by the 
forces given in Fig. 6 but also, to a smaller extent, by 
some ionic forces due to the cation. 

Cauchy relations 
According to Hausstihl (1967), the deviations from 

Cauchy relations constitute a second-rank tensor grs 
which represents information about bonding charac- 
teristics. In the case of  KHC204 the components of the 
reduced tensor g*s=grs. K (with K=vo lume  compres- 
sibility) have the following values: 

g~'l = - 0-024; g~'2 = 0"318 ; g~'3 = 0.746; g~'3 = 0.014. 

The principal axes of this tensor nearly coincide with 
the Cartesian system. Here also an appreciable anisot- 
ropy is observed. Characteristically, g~t, which repre- 
sents the forces in the cleavage plane (100), is found to 
have the lowest value. A similar behaviour is found in 
gypsum (Haussiihl, 1967). 

The author is deeply indebted to Professor Dr  S. 
Haussiihl for making experimental arrangements avail- 
able and for critical remarks. Thanks are also due to 

Dr  H. Siegert whose computer program was used and 
to Professor Dr  H. Pettersen for reading the manu- 
script. 
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An Automated Deconvolution of the Patterson Synthesis by Means of a Modified Vector- 
Verification Method. Its Application to Some Heavy-Atom Patterson Functions 
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Laboratory for Crystal Chemistry, Rijksuniversiteit Utrecht, The Netherlands 

(Received 2 December 1971 ; accepted 25 January 1973) 

A general scheme for the deconvolution of the Patterson-vector map is discussed, in which no structural 
information is needed. It appears to be possible to overcome the difficulties arising from vector overlap 
and vector coincidence. The vector-verification method is extended so as make it possible to locate every 
configuration of a small, fixed number of atoms, for which the complete corresponding vector set is pres- 
ent in the Patterson function. A criterion is defined which expresses the reliability of each configu- 
ration, making it possible to recognize the correct one. 

1. Introduction 

We employed the Patterson superposition method to 
develop an automated structure-determination proce- 

* Present address: Universitaire Instelling Antwerpen, de- 
partement Scheikunde, Universiteitsplein 1, 2610 Wilrijk, 
Belgium. 

dure, in which no a priori structural information is 
needed (Lenstra, 1969). Having but restricted computer 
facilities available it was not possible to handle the 
symmetry minimum function (Simpson, Dobrott  & 
Lipscomb, 1965) adequately. For  this reason we have 
used the vector-verification method (Mighell & Jacob- 
sen, 1963). 
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If the method of vector verification, illustrated in 
Fig. 1, is used ab initio in the deconvolution of the 
Patterson function, the first result will be a symmetry 
map (Raman,  1966), which shows the space-group sym- 
metry [Fig. l(c)], and in the case of a non-centrosym- 
metric space group an additional inversion centre at 
the origin. Therefore the first a tom can be chosen rela- 
tive to any of the symmetry centres of, for instance, the 
space group PT [Fig. l(d)]. This means that the first 
a tom to be located can be found in the asymmetric 
part of  the symmetry map, which is smaller than the 
asymmetric part of  the unit cell. Its dimensions can be 
determined beforehand from the known symmetry. 

The asymmetric part of  the symmetry map shows in 
the ' ideal '  case as many 'atomic positions'  as there are 
atoms in the asymmetric part of  the unit cell, and in 
practice it may show spurious ones too. Consequently, 
the 'density'  of  the distribution of these 'atomic posi- 
tions' will be much  higher than that of  the real-atom 
distribution. 

At this stage it is impossible to decide whether a cluster 
of  'atomic positions'  indicates the positions of one or 
more atoms or none. The usual interpretation criteria 
for this purpose, e.g. the frequency check (Gorres & 
Jacobson, 1964), are not sufficiently strict, because of 
the considerable overlap of structure images in the 
symmetry map. 

To overcome these difficulties we have to take into 
account the vectors between crystallographic non-equiv- 
alent atoms (Corfield & Rosenstein, 1966). F rom the 
outset applying these vectors too, we determined what 
the locations of any combinat ion of a small, fixed num- 
ber of  atoms might  be, instead of determining the posi- 
tions allowed for any single atom. This partial structure 
solution is described in the next section. 

The procedure of the partial structure solution often 
yields many  possible locations for the mentioned fixed 
number  of  atoms. From these we select a correct one by 
means of two criteria, namely a 'set reliability',  which 
is discussed in detail in § 3, and the common residual, to 
be discussed in our next paper (Lenstra, 1973). 

The results obtained by the application of our Patter- 
son-deconvolution procedure are given in §4. 

2. The partial structure solution 

Because of  the limited computer  facilities available we 
were forced to store the Patterson function in a one-bit 
code. Depending on the kind of interatomic vectors we 
were interested in, a certain height in the Patterson 
function was chosen as the level of  significance. All 
values in the Patterson synthesis above this level are 
essential (in the one-bit code representcd by the value 
unity); the rest was of no direct use for the structure 
determination (value zero in the one-bit c.~de). The 
crystal space is represented in this one-bit code too. 

The one-bit code representation of the Patterson 
function on the one hand decreases the required com- 
puting time considerably, but on the other h~.nd it is 

responsible for a big loss of  valuable information.  How 
far this use of the one-bit code affects, for instance, the 
interpretation of the crystal space in terms of atoms 
has been shown by Jacobson (1966). 

Starting the Patterson deconvolution we only know 
the space-group symmetry. Let x , y  and z be the co- 
ordinates of  the first searcher position. In general x, y 
and z are fully determined by the interatomic vectors 
produced by the space-group symmetry. In other cases, 
such as in the space group P21, the undetermined co- 
ordinates of  the first searcher position are fixed at the 
value zero. 

We assume that the structure sought contains N 
atoms in the asymmetric part of  the unit cell. The decon- 
volution of the Patterson function is started by locating 
a small, fixed number  of, say n atoms (n < N). 

The method applied for checking every combinat ion 
o fn  atoms was a vector test. A combinat ion o fn  atomic 
positions was accepted only as probably correct when 
the complete related vector set occurs in the Patterson 
synthesis. 

The independent variables chosen were the n searcher 
positions; so all related vectors are dependent variables. 
The searcher positions were assumed to coincide with 
the grid points in the crystal space. 

The area which one has to scan with the first searcher 
position can be restricted to the asymmetric part of the 
symmetric map;  for any other searcher position an 
area equal to the asymmetric part of  the unit cell should 
be scanned. 

Once the grid is fixed and the limited scanning areas 
for each searcher position are known it is quite easy to 
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Fig. 1. The illustration of the vector-verification method. (a) 
The original unit cell (plane group p2) containing two atoms 
in the asymmetric part. (b) The corresponding vector map, 
from which the origin peak is substracted. (c) The first atom 
distribution function derived by vector verification, knowing 
only the space-group symmetry. For clarity the origin shifts 
arc removed. (d) Each possible position for the first atom is 
found relative to any of the symmetry centres (implication 
diagram). The shaded area is the asymmetric part of the 
symmetry map. (e) The distribution for the second atom 
derived by vector verification, knowing not only the space- 
group symmetry, but also the position of the first atom, say 2. 
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generate all combinations of n atomic positions. In 
practice each combination is built up of one searcher 
position after another, applying the criterion that each 
addition of a possible atom will correspond to a num- 
ber of vectors that all have to occur in the Patterson 
function. 

If this is not the case the added searcher position is 
incorrect and therefore must be replaced by another. 
Every time a location for the nth searcher position is 
accepted the whole set of n atomic positions was stored 
as a possibly correct one. Our procedure ends when 
the required areas have been scanned completely. 

The result of the n-atom search is a list of all possibly 
correct sets. Of each different set we now know that all 
interatomic vectors are present in the one-bit code Patter- 
son function. This vector map, however, permits an arbi- 
trary number of coinciding vectors, which number may 
be contradicted by the height information in the origi- 
nal Patterson synthesis. This suffices to show that some 
of the obtained sets will be correct, and others will be 
false. 

3. The set reliability; choice of a correct set 

The more additional Patterson vectors that can be ex- 
plained, starting from the n atomic positions of a set, 
the more likely the set is to be a correct one. The distri- 
bution function An of the presumable positions for the 
(n ÷ 1)th atom was therefore calculated by vector veri- 
fication of each set. The search for the (n + 1)th atom 
is illustrated in Fig. l(e). 

The number (T) of the possibilities for the (n + 1)th 
atom, which was adopted as a reliability criterion, was 
expected to have a maximum value for a correct set. The 
set reliability was defined as: 

S~ Wvec X Wsym × T, 

where Wvec and Wsyrn are correction factors. 
wvec: An was calculated by testing the vectors corre- 

sponding to the (n+ 1)th atom. If the n atoms 
of the set are located in general positions we 
called the number of tested vectors B. If, how- 
ever, one or more atoms of the set are located at 
special positions the number of tested vectors will 
be lower, say C. 

. We state: Wve c = C/B. 
wsym: A, can be m-fold (m > I), owing to pseudosymme- 

try of a set. The value of Wsym is approximated by 
Wsy m = 1 / m .  

The choice of the first atoms in a structure analysis 
is very important, since it will influence all further con- 
clusions. So we decided not to rely on the set reliability 
only. The S function we defined is not an exact cri- 
terion. A great drawback of S is the impossibility of 
obtaining a theoretical S value for a correct set that 
can be compared with the experimental values. 

Consequently, we decided to make use also of the 
residual, which is a quantitative 'difference-Patterson' 
criterion (Lenstra, 1973). The theoretical values of the 

residual for a correct set and that of an incorrect one 
can be calculated, and so can be compared with the 
experimental values. This provides a sounder basis for 
the use of the residual as a means to distinguish among 
correct and incorrect sets. 

The use of both the residual and S is, of course, prop- 
er only if both functions are based on a different prin- 
ciple. Whereas the residual only gives information about 
the n atoms of the set, the S function is related to a 
tentative crystal structure, including the n atoms of the 
tested set. This important difference between these 
functions is illustrated in the following example. 

Suppose that by deconvolution of a Patterson func- 
tion we have found two sets of n atoms, which are crys- 
tallographically non-equivalent but which result in ex- 
actly the same interatomic vectors. In this case both 
sets will show the same value for the residual; therefore 
it is impossible to decide by means of this residual 
which set is the correct one. The S values of these two 
sets, however, will be different. They are determined by 
introducing the (n + 1)th searcher position, so that both 
sets in general will no longer be homometric. 

We therefore proceeded as follows to select a correct 
set. For all sets obtained by means of the partial struc- 
ture solution we calculated the related S values; the 
necessary information - the one-bit code Patterson func- 
tion - is directly available. We selected a number of these 
sets, say 15, which were the most promising because of 
their S values. Only for these sets did we calculate the 
corresponding residual; the lowest value of the residual 
should then correspond to a correct solution. 

4. Experimental results 

The procedure for the automated deconvolution of the 
Patterson function was tested on several heavy-atom 
compounds. We confined ourselves to the positioning 
of the heavy atoms only. For convenience n was taken 
equal to the number of independent heavy atoms in the 
asymmetric part of the unit cell. 

To determine the S values we now had to use a search- 
er position for a light atom in the derivation of An. The 
vectors, which all have to occur in the calculated one- 
bit code Patterson function, were restricted to the vec- 
tors between the 'light-searcher position' and the heavy 
atoms of the set. Therefore the level of significance had 
to be lowered compared with the original significance 
level we used to find all possible locations for the heavy 
atoms looked for. 

The calculated Patterson syntheses were slightly 
sharpened in the usual way. The grid distances were 
chosen ~0.25 A~ for both the Patterson map and the 
crystal space. We made use of the following com- 
pounds. 

Zinc malate (space group P21) contains two Zn 2÷ 
ions in the unit cell. The heavy-atom vectors appeared 
to be hardly influenced by other interatomic vectors. 
Our procedure yielded the correct zinc atom positions. 

Nickel hydrogen malate (space group P4:2~2 or 
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P43212) has four Ni z+ ions per unit cell. The Ni z+ was 
known to be located at a special position of  the space 
group. The heavy-atom vectors did not show overlap. 
The nickel a tom positions came out properly. 

Potassium hydrogen monof luormalonate  (space 
group Pea21) contains four K + ions in the unit cell, 
located at general positions. Some of the K vectors 
show a slight mutual  overlap. The K ÷ positions were 
corrcctly found from the vector map. 

The fourth test compund was (+)-benzeet imide hy- 
drobromide,  space group P 1. The unit cell contains two 
independent molecules. Both Br-  ions were properly 
placed by means of  our routine. 

Potassium hydrogen mesotartrate,  space group PT 
(Kroon & Kanters,  1972), contains two molecules in 
the asymmetric part  of the unit cell. Some of the K vec- 
tors show such an amount  of  mutual  overlap that some 
of the highest Patterson maxima do not correspond to 
real K vectors. The heavy-atom positions were correctly 
calculated in our deconvolution procedure. 

Bis(hydrazinecarboxyla to-N'-O)manganese  dihy- 
drate, space group Pba2 (Braibanti,  Tiripicchio, Man- 
otti kanfredi  & Camellini, 1967), served as the final 
test compound.  The structure contains four Mn ions 
per unit cell; the atoms, however, are located at two 
crystallographically non-equivalent,  special positions of  
the space group. Most of the heavy-atom vectors co- 
incide; some occur separately in the Patterson map. In 
this situation too the heavy atoms obtained by the ap- 
plication of  our procedure were correctly placed. 

In the six test cases unfortunately no homometr ic  
sets for the n-atom part  of  the structure were met with, 
which could have proved the indispensability of  the set 
reliability. In every case the set of  n atomic positions 
with the highest set reliability was correct. This set also 
showed the lowest value of the residual. 

In view of this it seems a pity to spend computer  time 
for the calculation of both the set reliability and the 
residual. 

However, the fact remains that the residual is not 
effective for homometric  sets in contrast  to the set 

reliability; on the other hand, excepting homometr ic  
sets, the residual is theoretically an absolute criterion 
and it is therefore the best we have. So we decided to 
maintain both criteria, but naturally we tried to reduce 
the computing time. In the case of, for instance, potas- 
sium hydrogen mesotar trate  the time required to com- 
pute the set reliability is nearly equal to the time needed 
to calculate the residual. It appeared that the time to 
compute S could be reduced to ,,~ 15 % of its original 
computing time by simply using a doubled grid spacing 
(~0"5  A) for the 07+ 1)th searcher position. We thus 
found that the correct set of heavy atoms for all six 
crystal structures mentioned still showed the highest 
S value. 

We accept a drawback of  this doubled-scan step 
which is, of course, a higher inaccuracy of the obtained 
S values. Table 1 shows that this is, for instance, respons- 
ible for a greater spreading in the S values belonging to 
sets that differ only in the choice of  the origin, namely 
set numbers 3, 4 and 7. The 15 sets given in this table 
were found by the deconvolution of the Patterson func- 
tion of  potassium hydrogen mesotartrate,  and these 
sets showed the highest S values. The other sets found 
are not mentioned in this Table. The rather  small varia- 
tions in S are the result of the levelling effect of  the one- 
bit code representation of the crystal space. 

Some of the given sets only differ from others by 
0.028 in one fractional coordinate.  This corresponds to 
a single grid spacing. The procedure followed gives 
them separately, because it cannot  discriminate between 
correct and nearly correct positions because of  the grid 
spacing and of  the use of  the one-bit code Patterson 
function. 

F rom Table 1 we also see that because of  the spread- 
ing in S values, it is not any longer necessarily justified 
to select a correct set only by means of  its S value. In 
our selected table, however, each correct set occurs. 
This is our main purpose, since we applied the set reli- 
ability as an initial criterion, not least because it is cal- 
culated about  eight times faster than the residual. The 
correct set is then obtained with the residual - a quanti-  

Table 1. Potassium hydrogen mesotartrate; results of the automated deconvolution procedure 

Set Fractional coordinates (x 10 3) 
number Searcher position I Searcher position II 

1 222 167 222 278 556 389 
2 250 306 278 222 944 111 
3 250 167 222 278 556 389 
4 222 444 111 278 833 278 
5 222 444 139 278 833 278 
6 222 139 194 000 500 500 
7 250 333 278 222 944 111 
8 250 194 222 278 556 389 
9 028 167 222 278 111 389 

10 028 167 222 333 056 722 
11 028 472 167 500 500 000 
12 250 139 194 000 500 500 
13 250 361 306 500 000 000 
14 194 111 000 500 000 500 
15 222 111 194 000 500 500 

255 329 272 223 934 129 

S R 
13 62.92 
12 63.61 
17 60.93 
14 62-92 
16 62.16 
10 67.19 
18 60.92 
13 63-61 
17 68.02 
16 69-25 
9 67.38 

10 66.14 
10 66.14 
10 67.48 
15 66-30 
K ÷ positions refined 

Remarks 

(J J_t~_ set 7 2 2  2 !  

(0½0) + set 7 

correct set. 
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tative criterion - as the final and most accurate criter- 
ion. 

The authors are grateful to Professor A. F. Peerde- 
man for critical reading of the manuscript. 
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X-ray Structural Damage of Triglyeine Sulphate (TGS) 
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The complete spectrum emitted by a conventional X-ray diffraction Cu target produces damage in a 
small TGS crystal which is evident from the variation of integrated intensities of X-ray reflexions with 
irradiation time. An interpretation of the data is proposed which assumes that the trapping of irradia- 
tion products causes an exponential decrease of mosaic-block diameters. An empirical correction of the 
Zachariasen extinction factor for crystals belonging to type II is suggested, since the TGS crystal is of 
this type. 

Introduction 

Structure analysis requires the accurate determination 
of both integrated intensities and structure factors. It 
is well known that X-rays used to collect data have un- 
desirable effects on the crystals. These effects are as- 
cribed to material instability, or to defects produced by 
X-ray damage. Young (1969) and Milledge (1969) have 
made detailed reviews of the different problems con- 
cerning the precise determination of integrated X-ray 
reflexion intensities, emphasizing how to avoid the ef- 
fects of damage rather than explaining the production 
mechanism. 

There is a copious bibliography covering the topic of 
irradiation damage with special reference to X-ray dif- 
fraction effects. Examples are Lonsdale, Nave & 
Stephens (1966), Kolontsova & Telegina (1969), Krue- 
ger, Cook, Sartain & Yockey (1963), Telegina & Ko- 
lontsova (1970), Larson & Young (1972) and Baldwin 
& Dunn (1972). Work on X-irradiated TGS crystals 
has been carried out by Petroff (1971), who detected 
planar defects, and Mendiola & Alemany (1970), who 
pointed out large variations in the intensities of X-ray 
reflexions with cumulative doses. 

In this paper we study the variation of integrated 
intensities of X-ray reflexions with time when a single 
crystal is irradiated by the complete spectrum emitted 
from a conventional X-ray diffraction Cu target. For 
reflexions with F > 16, a continuous increase in inten- 

sity is observed until a maximum is reached, followed 
by a decrease; but for reflexions with F < 16 the inten- 
sities diminish from the beginning. This behaviour is 
fairly well explained by an empirical correction to the 
Zachariasen extinction factor for crystals belonging to 
type II, as we suggest for TGS crystals, and assuming 
an exponential decrease of mosaic-block radius as 
well. 

The TGS lattice parameters and the observed and 
calculated structure factors of the reflexions used in 
this paper are the early ones reported by Hoshino, 
Okaya & Pepinsky (1959). The results obtained there 
are substantially the same as those deduced from the 
fractional atomic coordinates x , y , z  and temperature 
factors Bis given by Itoh & Mitsui (1971). However we 
do not follow the latter paper because no extinction 
correction is made. In this paper we show that the in- 
clusion of an extinction correction is necessary. 

Theory 

The concepts that are used in discussing the results have 
been exhaustively developed by Zachariasen (1967a,b; 
1968a, b,c,d; 1969). According to his theory, the inte- 
grated intensity of a reflexion from a symmetrically 
shaped crystal of volume v, assumed to consist of near- 
ly spherical domains of radius r, is given by 

l = l k .  y (1) 


